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Numerical study of the Marangoni instability resulting in surface tension auto-oscillations:
General regularities of the system evolution
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Theoretical studies are performed to explain the mechanism of surface tension auto-oscillations recently
found. The Marangoni instability in a system containing a surfactant droplet under the air-water interface is
investigated numerically. The simulations, based on the equations of fluid mechanics, take into account con-
vective diffusion and adsorption of the surfactant. The behavior of the system is determined by nonstationary
concentration gradients that are nonuniform on the surface as well as in the normal to the surface direction.
Initially a slow diffusion dissolution of the drop material takes place. The convective transfer of the surfactant
is negligible, the surface tension remains nearly constant and the system parameters change rather slowly
during the induction period. With the increase of the concentration gradients the system becomes unstable,
resulting in a jump in the convection velocity, surface tension, and adsorption on the surface. The concentration
and velocity distributions in the bulk and on the surface are obtained from the numerical solution of the
problem. The contributions of different mechanisms of the mass transfer are compared in different stages of the
process.
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INTRODUCTION

The presence of temperature or concentration gradien
a liquid system with a free interface can be the reason
instability and formation of various dissipative structure
such as steady convective cells or transverse and longitud
waves@1#. One of the mechanisms leading to instability
related to the Marangoni effect~i.e., to the action of a surfac
tension gradient!. Experimental evidence of this kind of in
stability is given, see, e.g.,@2–8#.

Although the governing equations describing the nons
tionary transfer of heat and mass are the same, some dis
tion can be in boundary conditions, in particular related
the adsorption processes. That is the reason why sys
with nonuniform concentration distribution require indepe
dent consideration. The theoretical investigation of this pr
lem was started by Sternling and Scriven@9#. They studied
the processes at the interface between two semi-infinite
uid phases in the presence of a concentration gradient o
third component in each of the liquids. Using small distu
bance analysis they determined the conditions under w
instabilities can exist in such a system. The theory was
ther developed in a number of subsequent works@10–17#,
which provide a comprehensive basis for the explanation
the experimental results.

Recent experiments show an interesting phenomenon
associated with the surface tension driven instability. It is
development of auto-oscillations of the surface tension w
a surfactant droplet is placed in the bulk of water@18#. The
auto-oscillations are characterized by an abrupt decreas

*Author to whom correspondence should be addressed.
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the surface tension after a relatively stable phase of sys
evolution. The impressive feature of this phenomenon is
existence of spontaneous oscillations over a long period
time. As shown in@18#, a diethyl phthalate droplet with a
diameter of about 3 mm can sustain oscillations for m
than 8 h. In our recent experiments with aliphatic alcoh
the auto-oscillations were observed for over 72 h@19#. The
peculiarity of this effect is that the auto-oscillations a
caused by solute transfer from the bulk of the liquid to t
air-liquid interface. It is known, however, that usually osc
latory instability reveals itself by mass transfer in the opp
site direction@8,15#. New theoretical studies are necessary
explain the mechanism of the surface tension au
oscillations because recent findings indicate a different or
than those considered earlier.

The behavior of the system with a surfactant droplet u
der the free liquid surface is determined by a concentra
gradient that changes over time and is nonuniform in sp
both tangential and normal to the surface. It demands a c
prehensive theoretical investigation that takes into acco
nonstationary states of the concentration gradient and
complicated geometry of the system. The qualitative exp
nation of the phenomenon of surface tension au
oscillations presented in@18# considers two different stage
in the dynamic behavior of the system, a slow stage an
fast stage. At first, during the slow stage, convection is sm
and almost all of the mass transfer of the surfactant into
system is due to diffusion. Next, during the fast stage, ins
bility arises in the system, convection develops rapidly a
accelerates the transfer of surfactant to the surface.

In the present paper we focus our theoretical studies
the mechanism of the surface tension auto-oscillations.
system considered is characterized by a set of nonstatio
partial differential equations. The equations cannot be line
©2001 The American Physical Society04-1
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ized because the variations of all the functions are large
the nonlinear effects play an important role in the mechan
of the auto-oscillations. Therefore direct numerical compu
tions that focus on the simulation of the processes of conv
tive diffusion and adsorption in a system consisting o
semi-infinite liquid layer were chosen as the method to so
the problem.

EXPERIMENTAL SECTION

At first the phenomenon of surface tension au
oscillations was revealed for diethyl phthalate~DEP! @18#. A
schematic representation of the tensiometric setup, includ
the measuring cell, where the experiments were performe
given in Fig. 1. The experimental procedure used is as
lows. A glass vessel was filled with ultra pure water~1! and
the water surface was cleaned to prevent contaminat
Then the vessel was covered with a glass plate~2!; a glass
capillary ~3! was introduced through an opening in a gla
cover and immersed into the water. A platinum Wilhelm
plate~5! was then introduced to measure the surface tens
Finally a surfactant droplet~4! was formed at the tip of the
capillary and the measurements were started.

The results described in@18# were obtained by using a
thermostated measuring cell at a temperature of 30 °C. N
experiments were carried out with DEP and mediate-ch
alcohols at the room temperature@19#. One of the experi-
mental curves for DEP at the room temperature is show
Fig. 2. It is seen that during a certain time interval, deno
as induction period, the surface tension did not change
markably. The duration of the induction period depends
the immersion depth of the capillary. In the experiment p
sented the induction time is approximately 12 min for a c
illary immersion depth of 6.2 mm. After this induction tim
surface tension auto-oscillations begin spontaneously.
period of this oscillation is about 14 min, the amplitude
about 1.5–2.5 mN/m. The oscillation has an asymme
shape with a sharp decrease in surface tension followed
gradual increase.

FIG. 1. Measuring cell for the study of auto-oscillations of su
face tension. 1, Water; 2, covering plate; 3, capillary; 4, surfac
droplet; 5, Wilhelmy plate.
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THEORETICAL MODEL

To model the system for the numerical simulation, it
appropriate to consider a semi-infinite liquid volume with
free air-water interface and a spherical surfactant dro
submersed into the liquid~Fig. 3!. Although the model had
infinite dimensions and neglects the presence of the ca
lary, the simulation shows that it is subjected to the sa
regularities as the experimental system shown in Fig.
Therefore, the model is appropriate to analyze the detail
the mechanism governing the surface tension au
oscillations.

The dynamic behavior of the system is described by a
of non-steady-state Navier-Stokes equation~1!, the continu-
ity equation~2!, and the convective diffusion equation~3!:

r
]v

]t
1rv•¹v52¹p1mDv, ~1!

“•v50, ~2!

t

FIG. 2. Experimental data of the auto-oscillations of surfa
tension@19#.

FIG. 3. Application of bipolar coordinates to the system with
surfactant droplet under the free water surface. 1, droplet; 2, w
surface.
4-2
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]c

]t
1v•“c5DDc, ~3!

where the density~r!, the velocity vector~v!, time ~t!, pres-
sure in the bulk~p!, the dynamic viscosity of the liquid~m!,
diffusion coefficient ~D!, and concentration~c! are repre-
sented by the variables given.

At the beginning of the dissolution process, the liquid
motionless. In the system, the transfer of the surfactant is
solely to diffusion. When the surfactant reaches the surf
~which initially is clean! it is adsorbed primarily in a region
close to the droplet. Therefore according to the system
ometry, a surfactant concentration gradient and a corresp
ing gradient in the surface tension result on the surface
produce a convective motion in the liquid. When the visc
ity of air is neglected, the following relation gives the vi
cous stress balance on the free liquid surface

]v t

]z
52

1

m
¹ss52

1

m

ds

dG
¹sG, ~4!

wherev t is the tangential component of the velocity on t
free liquid surface,s the surface tension,G the Gibbs adsorp-
tion, z the coordinate normal to the liquid surface~directed
downwards,z50 on the free liquid surface!, and ¹s the
surface gradient. Here the intrinsic surface viscosity is
glected. Proportionality between the adsorption and b
concentration@Eq. ~5!# as well as between the surface tensi
and adsorption~Eq. 6! are assumed because the surfact
concentration near the surface is small,

G5ac ~5!

and

s5s02RTG, ~6!

wherea is the Henry constant,R is the gas constant, andT is
the temperature.

Assuming the adsorption kinetics are diffusion controll
and mass transfer between the surface and ambient a
absent, Eq.~7! describes how adsorption changes over tim

]G

]t
1¹s~Gv t2Ds¹sG!2D

]c

]z
50 ~7!

whereDs is the surface diffusion coefficient. Here,¹s(Gv1)
describes the contribution of the surface convective flow
the surfactant transfer,¹s(Ds¹sG), the contribution of the
surface diffusion, and2D]c/]z the contribution of the sur-
factant exchange between the surface and the bulk solu

According to the symmetry of the system it is convenie
to use the bipolar coordinatesh, u, andw @20#:

h5
1

2
ln

x21y21~z1a!2

x21y21~z2a!2 ,

u5
i

2
ln

~Ax21y22 ia !21z2

~Ax21y21 ia !21z2
, tanw5

y

x
, ~8!
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where a is a constant, andi the imaginary unity. Reverse
transformations are

x5
a sinu cosw

coshh2cosu
, y5

a sinu sinw

coshh2cosu
,

z5
a sinhh

coshh2cosu
. ~8a!

Note that the bipolar coordinatew coincides with the corre-
sponding cylindrical coordinate. Obviously, according to t
system symmetry there is no dependency on this coordin
For the system under consideration, the bipolar coordina
are presented in Fig. 3~for simplicity, there the lines forw
5const are absent!. Using bipolar coordinates the compl
cated geometry of the system with a flat interface and
spherical droplet in the bulk is transformed into the simp
form of a rectangle bounded by straight lines withu50, u
5p, h50, andh5h0 . Another advantage of the transfo
mation is where the coordinateh→`. The position is now
located within the droplet, and for the calculation we obta
a system of finite dimensions instead of one with infin
dimensions. This simplifies the simulation procedure. T
coordinate of the free liquid interface~Cartesian coordinate
z50) is h50. The interface of the spherical droplet corr
sponds to a constant coordinate

h5h05arccosh
h

r 0
5 lnS h

r 0
1Ah2/r 0

221D ~h.r 0!,

~9!

wherer 0 is the droplet radius,h is the distance between th
center of the droplet and the free liquid interface. Sub
quently the constanta can be found as

a5Ah22r 0
2. ~10!

It is also convenient to introduce the vorticityv and the
stream functionC:

v5
1

a S ]@~coshh2cosu!vu#

]h
2

]@~coshh2cosu!vh#

]u D
2

2

a
~coshh2cosu!S ]vu

]h
2

]vh

]u D ,

vh5
~coshh2cosu!2

a2 sinu

]C

]u
, vu52

~coshh2cosu!2

a2 sinu

]C

]h
.

~11!

After introducing the dimensionless variables by means
the equations

t̃ 5t
D

a2 , ṽ5v
a2

D
, c̃5c

1

aD
, c̃5

c

c0
, ~12!

wherec0 is the surfactant solubility, the set of Eqs.~1!–~3!
in the bipolar coordinates takes the form
4-3
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]ṽ

] t̃
1

~coshh2cosu!3

sinu
S ]c̃

]u

]ṽ

]h
2

]c̃

]h

]ṽ

]u
D

2
ṽ~coshh2cosu!2~12coshh cosu!

sin2 u

]c̃

]h

1
ṽ sinhh~coshh2cosu!2

sinu

]c̃

]u
2Pr~coshh

2cosu!2S ]2ṽ

]h2
1

]2ṽ

]u2 D 1Pr sinhh~coshh2cosu!
]ṽ

]h

1Pr
~coshh2cosu!~12coshh cosu!

sinu

]ṽ

]u

1Pr
~coshh2cosu!2

sin2 u
ṽ50, ~1a!

~coshh2cosu!3S ]2c̃

]h2 1
]2c̃

]u2 D 1sinhh~coshh2cosu!2
]c̃

]h

1
~coshh2cosu!2~12coshh cosu!

sinu

]c̃

]u
2ṽ sinu50,

~2a!

] c̃

] t̃
1

~coshh2cosu!3

sinu
S ]c̃

]u

] c̃

]h
2

]c̃

]h

] c̃

]u
D 2~coshh

2cosu!2S ]2c̃

]h2
1

]2c̃

]u2D 1sinhh~coshh2cosu!
] c̃

]h

1
~coshh2cosu!~12coshh cosu!

sinu

] c̃

]u
50, ~3a!

where Pr5m/rD is the diffusion Prandtl number.
The following initial conditions can be postulate

namely, that the liquid is motionless and the surfactant c
centration is equal to its solubility in water at the interface
the surfactant droplet and is zero everywhere else,

ṽ~h,u!50, c̃~h,u!50 at t50, ~13!

c̃~h,u!5H 1, h5h0

0, 0<h,h0
at t50. ~14!

According to the system symmetry it holds

ṽ50,
] c̃

]u
50 at u50 and u5p ~ t.0!. ~15!

Assuming the nondeformable free surface and using
stream line definition we can write
03160
-
f

e

c̃50 at u50, u5p, h50, and h5h0 ~ t.0!.
~16!

The boundary condition forṽ at h5h0 can be obtained
from Eq. ~2a!. Making use of Eq.~16! and the assumption
that the droplet surface is motionless, it can be written a

ṽ5
~coshh2cosu!3

sinu

]2c̃

]h2 at h5h0 ~ t.0!. ~17!

It is obvious that

c̃51 at h5h0 ~ t.0!. ~18!

Taking into account Eq.~16!, the boundary condition~7! at
the free liquid surfaceh50 is

] c̃

] t̃
2

~12cosu!3

sinu

]c̃

]h

] c̃

]u
2

Ds

D
~12cosu!2

]2c̃

]u2

2
Ds

D

cosu~12cosu!2

sinu

] c̃

]u
2 c̃

~12cosu!3

sinu

]2c̃

]h]u

2 c̃~12cosu!2
]c̃

]h
2

a

a
~12cosu!

] c̃

]h
50. ~7a!

Considering Eqs.~2a! and~16! the expression for the bound
ary condition of Eq.~4! can be rewritten forṽ at the free
surface

ṽ52M ~12cosu!
] c̃

]u
at h50 ~ t.0!, ~4a!

whereM52(ds/dG)(dG/dc)(c0a/mD) is the Marangoni
number.

NUMERICAL PROCEDURE

The numerical simulation of the dynamic behavior of t
system under consideration was carried out on a regular
by using 31331 mesh points. It is important that the chos
grid is uniform in the bipolar coordinate system but it
nonuniform in the Cartesian coordinate system. The ma
mum density of the grid lines is in the region between t
interface and the surface of the droplet close to the symm
axis. The advantage of the chosen approach consists in
more exact calculations for the initial stage of the proc
when the diffusion and velocity fields are located near
droplet with distances that are not large as compared with
distance between the interface and the droplet. However
accuracy of the calculations decreases for large distance
that the calculations are less precise for the late stage o
instability development when intensive convective moti
propagates far away from the droplet.

The method of successive approaches was applied
solve the elliptic equation~2a! for the stream function, and
the one-step explicit finite difference computational meth
was used to solve the parabolic equations~1a! for the vortic-
4-4
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ity and ~3a! for the concentration. The maximum possib
time step for explicit computational methods is determin
by the condition of the stability in the numerical schem
@21#. In the simulation procedure presented, the time s
was changed within the limits of 1023– 1024 s depending on
the process velocity in the system. For the same reason
a unilateral difference of first order~difference ‘‘against the
stream’’! can be used.

The representation of some of the boundary conditi
should be discussed in more detail. The boundary condi
for the vorticity at the droplet surface@Eq. ~17!# can be
evaluated in a number of ways~see, for instance,@22#! giving
various orders of precision. Unilateral differences hav
first order precision were used in the convective terms of
~1a!. Equation~17! was also represented by an expression
first order:

ṽh0 ,u j
5

~coshh02cosu j !
3

sinu j

2C̃h02Dh,u j

~Dh!2 . ~19!

Solving the equation for the stream function@Eq. ~1a!# the
iteration procedure converges more rapidly when Eq.~19! is
used rather than using an expression of second order.

For the boundary conditions of the concentration@Eq.
~15!# a better convergence is obtained by the representa
of the second order scheme

c̃i ,05
4c̃i ,Du2 c̃i ,2Du

3
. ~20!

In order to advance the dependent variables by one t
step, the following computational procedures must be car
out: ~i! solution of Eqs.~1a! and ~3a! for vorticity and con-
centration at the inner grid nodes using the stream func
values of the preceding time step;~ii ! solution of Eq.~2a! for
the stream function at the inner grid nodes using the vorti
values obtained at the present time step and taking into
count the zero values for the stream function at the bou
aries;~iii ! calculation of the concentration and vorticity va
ues at u50, u5p, and h5h0 from the boundary
conditions of Eqs.~15!, ~17!, and ~18! taking into account
Eqs.~19!, ~20!; ~iv! solution of Eq.~7a! for the concentration
at h50; and~v! calculation of the vorticity values ath50
from Eq. ~4a! taking into account Eqs.~5! and ~6!.

In the present paper the simulation results of the follo
ing set of the system parameters is considered: the solub
of the surfactant in waterc056.731026 mol/cm3, the Henry
constanta56.931024, the diffusion coefficients in the vol
umeD and in the surfaceDs—531026 cm2/s, droplet radius
r 051 mm, and the droplet immersion depthh51 cm. Ac-
cording to @18# the values of the solubility and the Henr
constant correspond to the properties of diethyl phthal
The chosen value of the diffusion coefficient in the volume
close to that estimated by the Wilke-Chang correlation@23#
for diethyl phthalate at room temperature. The effect of
surfactant properties on the system behavior will be con
ered in a forthcoming paper.
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RESULTS AND DISCUSSION

The proposed simulation procedure allows us to obt
the values for concentration, stream function, and vorticity
the grid nodes as functions of time and consequently to
culate the distributions of surface velocity, adsorption, a
surface tension. This is the basis used to describe the ev
tion of the system due to the dissolution of the surfactan
the vicinity of the free liquid surface and explain the mech
nism of the surface tension auto-oscillations.

The numerical simulation confirms that the main peculi
ity of this mechanism arises from a competition betwe
diffusion and convection. The transition of the system in
unstable state is accompanied by a sharp increase of the
vection velocity and a simultaneous decrease of the sur
tension. Accordingly the system evolution can be divid
into two stages, a slow diffusion stage and a fast convec
stage.

In the beginning of the slow diffusion stage, the liquid

FIG. 4. Convective stream lines in the bulk~a! t516 min after

onset of the process,C̃max53.40731028, DC̃5831029; ~b! 39

min, C̃max50.206, DC̃50.04; ~c! 45 min, C̃max521.04, DC̃

55; ~d! 45 min 16 s,C̃max5828, DC̃5205; ~c! 45 min 20 s,

C̃max59602, DC̃52350; ~f! 45 min 22 s, C̃max545 923, DC̃
511 000.
4-5
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FIG. 5. Surface velocity distribution~a! 1, t
516 min after onset of the process 2,t
516.5 min; 3, t517 min; 4, t517.5 min; ~b! 1,
t538 min; 2, t538.5 min; 3, t539 min; 4, t
539.5 min; ~c! 1, t545 min 12 s, 2, t
545 min 16 s, 3, t545 min 20 s 4, t
545 min 24 s.
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motionless and only diffusion takes place in the syste
Over time, in a region close to the symmetry axis, there is
accumulation of surfactant. It has a nonuniform distributi
at the surface, and the corresponding surface tension gra
leads to the development of the convective surface mot
During this stage the surface concentration gradient incre
slowly and the flow velocity of the liquid remains very sma
Therefore the nonlinear convective terms in the Eqs.~3! and
~7! are very small, and convection has almost no effect
the concentration field formed due to diffusion of the surfa
tant. This stage corresponds to the induction period obse
in experiments.

In the beginning the stream function has a maxim
point situated close to the surface near the symmetry axis
the convection develops in the bulk, the maximum point
displaced away from its starting location@Figs. 4~a! and
4~b!#. On the other hand, the maximum of the surface vel
ity moves only at the onset of the process and then rem
nearly fixed over a long period of time@Figs. 5~a! and 5~b!#.
Even 44 min after the droplet dissolution has begun,
concentration distribution profiles in the bulk have a sphe
cal shape@Fig. 6~a!#. This is an indication that during thi
time convective motion is still rather weak.

Adsorption causes the accumulation of the solute on
surface, near the axis, as well as an increase in the su
concentration gradient@Fig. 7~a!#. Nevertheless, the increas
in surface concentration is still too small to lead to an app
ciable reduction in surface tension during the induction
riod even in the surroundings of the axis.

However, the system becomes unstable after a suffic
amount of surfactant dissolves in the bulk and is adsorbed
the surface. This is characterized by a rapid increase in fl
velocity and convective transfer of the surfactant in the s
tem.

According to the equation of the mass conservation in
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bulk @Eq. ~3!# the change of the solute concentration at a
point in the bulk is determined by the balance of diffusi
and convective transfer at that point. A comparison of
contributions from convection and diffusion to the change
bulk concentration shows that at approximately 41 min,
contribution of the convective flux becomes larger than
diffusion ~initially only in the small region near the symme
try axis at the depth of about 0.15 cm!. The increase in the
convective region over time is more prominent in the verti
direction, where at 44 min it extends to a vertical depth
0.9 cm, compared to a maximum of only 0.3 cm in the rad
direction. The appearance of a region where convective m
transfer predominates leads to increases in~1! solvent supply
to the surface,~2! the surface gradient, and~3! to more in-
tense surface movement. A further increase in velocity int
sifies the convective mass transfer producing finally insta
ity in the system.

The surface mass balance equation@Eq. ~7!# shows that
the surface convection, surface diffusion, and normal dif
sion flux from the bulk are responsible for surface conc
tration changes over time. Let us consider surface reg

FIG. 6. Concentration distribution~a! t544 min after onset of
the process 1, surfactant droplet (c̃51); 2, c̃5231022; 3, c̃52
31024; 4, c̃5231026; 5, c̃5231029. ~b! t545.5 min, 1, the
surfactant droplet (c̃51); 2, c̃50.3; 3, c̃50.03; 4,c̃50.003.
4-6



NUMERICAL STUDY OF THE MARANGONI . . . PHYSICAL REVIEW E 63 031604
FIG. 7. Adsorption distribution:~a! 1, t
543 min after onset of the process; 2,t
543.5 min; 3,t544 min; 4, t544.5 min~b! 1, t
545 min 16 s; 2, t545 min 20 s; 3, t
545 min 24 s.
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near the axis. Here diffusion from the bulk supplies the s
vent to the surface producing a positive change in surf
concentration. While surface convection and diffusion
duce the surface concentration by moving surfactant a
from the axis. When a predominant region of convect
mass transfer appears in the bulk, fluxes show a rapid
crease, but the normal diffusion transfer exceeds surface
vection and surface concentration increases near the sym
try axis. The intense convective motion near the symme
axis causes the displacement in the stream function’s m
mum point back to the axis@Fig. 5~c!#. It should be noted
that the surface diffusion flux is always some orders of m
nitude lower than both the surface convection and nor
diffusion, therefore its effects are negligible.

The situation in the distant regions is more complicat
The normalized contribution of the different mechanisms
mass transfer on the surface forr 50.21 cm~the point where
the surface velocity is maximal during the slow stage! is
presented in Fig. 8. In the beginning the contributions fr

FIG. 8. Mass transfer at the surface atr 50.21 cm. 1, contribu-
tion of the normal diffusion flux@Vn52(a2/aDC0)D]c/]z#; 2,
contribution of the convective flux@Vc5(a2/aDC0)¹s(Gv t)#; 3,
contribution of the surface diffusion flux @VD

5(a2/aDC0)¹s(Dg¹sG)#.
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all of the above mentioned fluxes produce positive chan
in the surface concentration. The normal diffusion from t
bulk provides the main contribution. Originally the contrib
tion from the convective surface flux is very small, but aft
43 min it is of the same order as the contribution from t
normal diffusion flux@Fig. 8~a!#. The contribution from the
surface diffusion is always rather small so that it is not p
sented in Figs. 8~b!, 8~c! and 8~f!.

The instability develops in the vicinity of the symmetr
axis where the largest concentration gradient occurs. Initi
the convective flux brings surfactant solution with a high
concentration to the surface so that the growing instability
sustained. The surfactant is rapidly transferred from the a
to remote parts of the surface by convection. This results
the development of an opposing concentration gradient
tween the surface and the bulk leading to a partial desorp
of the surfactant@i.e., a negative flux, Fig. 8~b!# as the con-
centration in the bulk phase near the surface increa
slowly. It should be emphasized that the opposite concen
tion gradient near the surface is localized to a particular
gion. Over time, this region displaces away from the sy
metry axis. Nevertheless the surface concentration contin
to grow as the positive contribution from the surface conv
tive flux outweighs the negative contribution of the norm
diffusion flux.

As the surfactant spreads, more distant regions of the
face are involved in the motion@Fig. 5~c!#. Consequently,
convection develops in the bulk@Figs. 4~d!, 4~e!, and 4~f!#
accelerating the transfer of surfactant even to remote reg
of the surface. Over time, this transfer leads to an increas
both bulk concentration near the surface, and once aga
positive normal diffusion flux towards the surface@Figs. 8~c!
and 8~d!#.

The fast spreading of the surfactant over the surface@Figs.
6~b! and 7~b!# corresponds to a very fast~<10 s! decrease in
surface tension~Fig. 9!. Simultaneously, the surface velocit
increases~Fig. 10! and the maximum point of the stream
function moves away from the axis@Figs. 4~d!, 4~e!, and
4~f!#.

The surface velocity is not uniform. It is zero at the sym
metry axis, increases with the distance to a maximum,
then decreases~Fig. 5!. Surface dilatation is observed in re
gions where the velocity increases, whereas surface comp
sion occurs where the velocity decreases. Likewise, near
axis, a fast increase in the surface velocity with time p
4-7
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duces a fast dilatation of the surface. The convective sur
flux contribution becomes negative@Fig. 8~c!# and increases
rapidly with time in the absolute value@Fig. 8~d!#. The sur-
face concentration increases and the surface tension
creases until the contribution of the normal diffusion fl
exceeds that of the negative convective surface flux. At
proximately 45 min 25 s both contributions compensate e
other. The surface concentration approaches a maxim
and correspondingly the surface tension exhibits minim
~Fig. 9!. Then the surface expansion begins to prevail,
surface concentration decreases and the surface tensio
creases. Simultaneously both the surface convective flux
the normal diffusion flux decrease in the absolute value@Fig.
8~d!#.

Convection spreads the surfactant over the surface
distributes it in the bulk mixing it with the more dilute solu
tion. The mixing of the surfactant reduces the concentra
gradients in the system. As a consequence of the more

FIG. 9. Surface tension vs time after onset of the instability
different distances from the symmetry axis: 1, 5 mm; 2, 10 mm
15 mm.

FIG. 10. Velocity at the free water surface vs time after onse
the instability at different distances from symmetry axis: 1, 5 m
2, 10 mm; 3, 15 mm.
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form distribution of surfactant the system is returned to
stable state and the surface velocity gradually decreases~Fig.
10!.

It is seen from Fig. 9 that the maximum decrease in
surface tension~oscillation amplitude! depends on the dis
tance from the symmetry axis. This result corresponds to
experimental data recently obtained. It was revealed by
experiments with a diethyl phthalate droplet that the osci
tion amplitude decreases from 2–2.5 mN/m to approximat
1.5 mN/m by increasing the distance between the capill
and the Wilhelmy plate from 15 to 30 mm@19#.

The analysis shows that the performed numerical simu
tion reflects the main peculiarities of the surface tens
auto-oscillations experimentally observed. However, th
are some distinctions connected with the chosen model.
theoretical model considers a semi-infinite liquid laye
whereas the real experimental systems are bounded. Fur
more, a system without a capillary was theoretically cons
ered. In reality it takes some limited~rather short! time to
spread surfactant over the whole surface and the convec
motion damps faster owing to viscous dissipation on the c
illary and the vessel walls. The oscillation amplitude is e
pected to be larger and the duration of the induction per
expected to be shorter in real systems because of their
ited dimensions.

The numerical model has also a limitation connected w
the large grid step in the distinct regions of the system
follows from the calculations that in the late stage of t
process development, the intensive convective motion pro
gates with distances much larger than those between th
terface and the droplet. As discussed above, the precisio
the calculations drops in this case, so that the results bec
less reliable. Thus, the calculations cannot be continued
the complete convection damping that is just the precon
tion for the next oscillation. Therefore only the first oscill
tion can be considered in the frameworks of the chosen
merical model but not the periodicity.

Nevertheless the chosen model permits a good descrip
of the system dynamics in the initial period, because
processes in the distant parts of the system do not influe
its behavior during the whole induction period. The calcu
tions give reliable values of the induction period compara
with the experimental data. The general shape of the osc
tion can be simulated. The calculations are able to pre
both the abrupt decrease in the surface tension at the be
ning of the instability followed by the surface tension min
mum and the following increase due to surface dilatat
near the axis and partial surfactant desorption in the dis
regions. Although the numerical model allows to consid
only the first oscillation, it shows an obvious tendency f
the system to revert to the initial stable state, which is
precondition for the next oscillation.

The concrete comparison with experimental results w
be a subject of further considerations. Particularly the eff
of the surfactant properties such as solubility, surface ac
ity, and bulk diffusion coefficient on the system behavior c
provide additional information. During the induction perio
the main processes are located near the symmetry axis so
the system dimensions seem not be significant for the be

t
,

f
;
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ning of the instability. Therefore, the induction times calc
lated with the numerical model will correspond to tho
found in the experiments.

CONCLUSIONS

The numerical simulation allows a comprehensive
scription of the mechanism of surface tension au
oscillations observed experimentally in a system with a l
soluble surfactant droplet placed under the free water
face. A simulation was carried for the case of a semi-infin
liquid volume on the basis of the nonlinear, nonstation
state equations of fluid mechanics taking into account
dynamic adsorption of the surfactant. The numerical solut
of the problem allows one to trace a series of consecu
changes in the system during the process of saturatio
water by surfactant. The development of instability produc
by the Marangoni effect can be considered in this way.

As the chosen model deals with a semi-infinite system
describes only the initial period of the system evolution a
cannot reflect the whole series of the auto-oscillations. N
ertheless the model provides the main features of the pro
under consideration: the existence of the induction out t
when surface tension remains practically constant, the s
decrease of the surface tension when instability arises,
the gradual increase of the surface tension when the con
tive motion fades. This points the return of the system to
stable state. The overall process can be subdivided into
stages.

The initial slow stage is characterized mainly by diffusi
transfer of the surfactant from the droplet into the liquid. T
surface adsorption gradient and consequently, surface
sion gradient gradually increase over time. At first the s
tem shows a small convection velocity that does not cont
ute appreciably to the transfer of surfactant. The increas
adsorption gradient on the surface is the driving force
sponsible for increasing velocities, both surface and b
and also the normal concentration gradient near the surf
hy

r-

, J

J.

em

03160
-

-
-

r-
e
y
e
n
e
of
d

it
d
v-
ss
e
rp
nd
c-
e
o

n-
-
-
g
-
,
e.

The maximum of the adsorption and normal concentrat
gradients located near the symmetry axis causes the de
opment of instability in this particular region after a suf
cient amount of surfactant accumulates there.

The second~fast! stage starts when the system becom
unstable. At this point all parameters of the system sho
rapid change. The instability begins to develop when
convective transfer becomes dominating in a small region
the bulk around the symmetry axis. The growing instabil
is sustained by a normal concentration gradient. The num
cal results allow a comparison of diffusion and convect
solute transfer, both in the bulk and on the surface, dur
the different stages of the process. Initially the convect
surface flux brings the surfactant from the axis to the rem
parts of the surface and increases surface adsorption,
later it tends to reduce the adsorption producing a fast
face expansion. The adsorption increases as long as the
mal diffusion flux prevails on the effect of surface dilatatio
that is accompanied by a decrease in surface tension. A
the surface dilatation becomes predominant the surface
sion commences to increase. A strong convective fl
spreads the surfactant over the surface and mixes the
solution. After a more dilute solution is supplied to the su
face the concentration gradients decrease and the syste
turns to the stable state.

The numerical results confirm the mechanism of the s
face tension auto-oscillations described qualitatively in a
cent paper@18# and allow the understanding of the ma
regularities of the system behavior experimentally observ
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